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  A 10-bit 10 GSPS Optical ADC for Radar Signal Processing  

 

 

Executive Summary 

 

We investigated and demonstrated an optoelectronic scheme for a high-speed 

optical analog-to-digital converter.  The system was designed with the following 

objectives in mind: a) to maintain the RF signal in the electrical domain throughout the 

conversion process and thereby eliminate the use of bulky optical components b) low 

optical power budget.  For instance the basic sampling circuit require 50-60 µm optical 

power c) direct interface to electronic quantization circuits, d) compact design.  In all a  

sampling rate of 4 GSPS was achieved.  The limitation in conversion speed was dictated 

by the photodiode which had a 3dB-bandwidth of 5GHz.  The following tasks were 

completed:  

1) Pspice simulation of sampling circuit.  

2) Design, implementation and synchronization of the optical clocks needed for a) 

sampling of incoming RF signals, b) demultiplexing the sampled signals to lower data 

rate for electronic quantization. 

3) Interface of optical sampling circuit with National Instrument LABVIEW data 

acquisition system for quantization of sampled signals to produce an 8-bit gray code 

digital output.  

4) Optical sampling circuit optimization resulting in a 50% reduction in optical power 

consumption.   
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1. PSPICE Simulation of optical Sampling Circuit 

Figure 1 represents the basic optoelectronic RF sampling circuit.  It consists of two 

back-to-back photodiodes arranged to act as a fast optoelectronic switch.  The back-to-

back arrangement is essentially an electrical open circuit, which can be taken to be the 

OFF-state of a fast optoelectronic switch.  When the diodes are simultaneously actuated 

with a laser pulse, the switch toggles to the ON-state.  Thus, a train of mode-locked laser 

pulses applied to the diodes of figure 1 will result in optical sampling of the RF input. 

The sampled RF appears across the load resistance. 

 

 

Figure 1. Basic RF sampling circuit. The circuit consists of two back-to-back 
photodiodes that act as fast optoelectronic switch actuated by mode-locked laser 
pulses. 
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A PSPICE circuit of figure 1 was designed and simulated.  The diode was represented 

by its equivalent circuit, shown in figure 2.  The ideal diode was represented in the 

PSPICE circuit as a switch, and the input optical pulses needed to actuate the switch 

were represented as electrical signal with the same repetition rate, amplitude and 

pulse-width as the laser pulses.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Equivalent circuit of photodiode. 

Fig. 3: PSPICE model for optoelectronic sampling circuit. 
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The parameter values for the components in figure 3 were obtained from manufacturers’ 

data sheets for the photodiode.  The “Sbreak” elements (S1 and S2) represent the 

optoelectronic switches in figure 1 (or the ideal diodes of figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sample simulation is shown in figure 4.  The upper graph depicts the pulses that actuate 

the photodiode.  The input sinusoid and the sampled RF output are shown in the lower 

circuit. 

2.  Optical clock synchronization. 

 Two of the optical clocks required for the optical ADC system run at 1GHz and 

250MHz respectively, and the third is digitally tunable between 10-100MHz.  The 

250MHz optical clock was tapped directly from the output of a 100ps 250MHz mode-

Figure 4. Simulation result for the sampling circuit. Top figure represents the 
sampling pulses, bottom figure represent the RF input and the sampled output. 
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locked fiber laser.  Tapping and circulating a portion of the 250MHz mode-locked laser 

output generated the 1GHz optical clock.  The 1GHz and 250 MHz clocks are 

synchronized by virtue of the fact that they were generated from a single mode-locked 

laser source.  The 10-100MHz tunable clock was generated from the output of a laser 

diode driven by an electronic laser driver circuit.  The laser driver circuit is shown in 

figure 5.  It is designed around an electronic counter chip MC100E136FN which takes as 

its input a sinusoidal signal and produces a digital output with a bit rate that is selectable 

between 10MHz and 100MHz.  The output is taken from the Cout.  

 

 

 

Figure 5. Electronic counter circuit used to drive a pigtailed laser diode. The laser diode 
output gives optical pulses 4ns wide and of variable repetition rate. 
 

The frequency of the square wave depends on the setting of Q0-Q5 switches.  The signal 

is amplified and buffered with the GAL-2 transistor circuits and the THS3001 chip.  The 
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output of the counter circuit is used to drive a pig-tailed laser diode to produce an optical 

pulse width of 4ns.  In order to synchronize the laser diode output signal with the other 

1GHz and 250MHz clocks we tapped the 250 MHz RF signal needed to drive the input of 

the counter from the 250MHz reference signal of the mode-locked laser.  

 

 

 

 

 

    

 

 

 

 

         

 

 

Fig. 6 shows a diagram representing the clock generation technique.  The 

250MHz (4ns rep rate, 100ps width at 1330nm) optical pulse from the mode locked laser 

serves as the clock for the intermediate tier of the sampling hierarchy.  This optical pulse 

is then chosen to be 1.5 meters.  A 250MHz sine wave reference (electrical) is available 

from the mode-locked laser.  This reference is used as the standard from which the clock 

for the quantizing tier of the demultiplexing hardware is derived.  An ECL counter set for 

 50/50  
coupler

Free-
space   

l

÷ N 
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locked laser 

 

 250MHz    
reference 

1GHz 
optical       

250MHz optical 
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Fig. 6  Clock generation for sampling and demultiplexing 
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divide-by-N, where 
N

250MHz  is the maximum acceptable input rate of the selected 

quantizer, is used to demultiplex the 250MHz optical clock.  This electrical signal is then 

used to drive a laser diode, which will control the photodiode.  The width of the 

demultiplexed pulses are approximately 20ns wide, corresponding to the width of the 

demultiplexed optical pulses from the laser diode.  Figure 7 is a high-speed digital 

display of the three clock pulses.  The top is 25MHz, the middle 250MHZ, and the 

bottom 1GHz. 

 

 

Figure 7 Oscilloscope display of Optical clock. Top is 25MHz, Middle 250MHz, 
bottom 1GHz. 
 

3. Simulation of combined sampling/demultiplexing subsystem 

Figure 8 shows the sampling circuit in the dashed block.  The incoming 1GHz RF 

signal is amplified and split into multiple channels with each channel fed into a separate 

sampling circuit.  The optical clock actuating the photodiodes has a repetition rate T = 1/f 

where f = 1 GHz.  These clock pulses are sent via delay lines to the sampling circuits. 
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The delay lines are tailored so that each sampling circuit samples a different phase of the 

RF demultiplexing circuit. 

 

 

 

Figure 8. Sampling Circuit followed by a two demultiplexing stages. The demultiplexing 

stages slow the sampled RF data rate to a point where each sample signal can be directly 

quantized by electronic circuitry.  

 

 

 

 

 

Figure 8 also shows a sampling circuit block followed by two demultiplexing blocks 

between successive stages.  The demultiplexer circuit is similar to the sampling circuit.  It 

is comprised of two back-to-back photodiodes, acting as fast optoelectronic switches that 

can be actuated by laser pulses.  The first demultiplex circuit is actuated by 250 MHz 

clock pulses and the second by 25MHz clock pulses.  As a result, the original 1GHz 

sampled RF pulses are demultiplexed into an aggregate of forty (40) 25-MHz sampled 

channels which can directly be quantized by electronic quantization circuitry.  Once the 

data rate has been reduced considerably, electronic quantizers are then employed at the 

final stage of the optical ADC converter.  A PSPICE model was designed and simulated 

for one of the forty channels.  The SPICE  model is shown in figure 9. 

Fig. 8 PSPICE model for sampling block followed by demultiplexer blocks. 
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Figure 9. PSPICE model for the sampling/demultiplexer subsystem 

 

Figure 10 is a simulation result for the sampling/demultiplexer subsystem.  The top figure 

represents a 10 GHz pulse.  The lower circuit represents the output of the sampling 

circuit.  Notice that the sampling rate is 10GSPS.  The middle figure represents one of the 

demultiplexed signals at a data rate of 1GSPS. 
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Figure 10. Simulation result for the circuit of figure 9.  Top represents a 10 GHz pulse; 
middle represents one of the demultiplexed signals at data rate of 1GSPS; lower 
represents output of the sampling circuit at 10GSPS.  
 
 
 
4. Quantization of sampled RF 

For the quantization system a National Instrument LABVIEW hardware computer 

interface board was used.  The output of the demux to the LABVIEW was connected to 

the scope input and appropriate Labview code was written to quantize the sampled 

signals.  Figure 11 illustrates the front panel display of the LABVIEW-based quantizer.  

It represents the incoming sampled signals, and Figure 12 depicts the quantization levels 

of five of the sampled outputs.  Both the analog amplitude and the corresponding gray 

code are displayed.   
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5. Discussion 

Towards the end of the project it was demonstrated that a single photodiode can 

be T-biased to perform the same switching function similar to the back-to-back 

photodiode arrangement for RF sampling and demultiplexing.  Figure 13a and Figure 13b 

show the original circuit and redesigned circuit respectively.  The original design utilizes 

a back-to-back photodiode arrangement in the sampling circuit.  The new design utilizes 
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only a single diode.  However, to ensure that both positive and negative half-cycles of the 

input RF are sampled, a biased-T network is included.  

 

 

   

 

 

 

 

 

 

 

 

 

Figure 12. LABVIEW front panel display of the quantizer. The top panel shows 
incoming sampled data from the optical ADC into the Labview data board.  The middle 
panel shows five of these sample data selected by Labview to quantize. The bottom panel 
shows the eight bit digital code for the quantized data.  
 

The DC voltage is arranged to reverse bias the photodiode and its value is also chosen so 

that regardless of the RF amplitude the diode is always reverse biased.  Under these 

conditions one the optical sampling pulses are applied.  The sampled output rides over 

the DC voltage as reference.  

The new design has many advantages.  First, it utilizes only a single diode and 

requires 50% less optical power compared with the original circuit.  Secondly, the 
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sensitivity of the diode is greatly enhanced when it is used in its reverse-biased 

configuration.  Thirdly, it reduces the overall device count, and therefore lowers the cost 

and size of the complete optical ADC system. 

             

    

            (a)      (b) 

Figure 13. Original  (a) and new-improved (b) optoelectronic sampling and 
demultiplexing circuit. The new design consumes 50% less optical power than the 
original design. 
 


